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Abstract—This paper discusses risk management, contracting, 

and bidding for a wind power producer. A majority of the wind 
power in the United States is sold on long-term power purchase 
agreements, which hedge the wind power producer against future 
price risks. However, a significant amount is sold as merchant 
power and therefore is exposed to fluctuations in future 
electricity prices (day-ahead and real-time) and potential 
imbalance penalties. Wind power forecasting can serve as a tool 
to increase the profit and reduce the risk from participating in 
the wholesale electricity market. We propose a methodology to 
derive optimal day-ahead bids for a wind power producer under 
uncertainty in realized wind power and market prices. We also 
present an initial illustrative case study from a hypothetical wind 
site in the United States, where we compare the results of 
different day-ahead bidding strategies. The results show that the 
optimal day-ahead bid is highly dependent on the expected day-
ahead and real-time prices, and also on the risk preferences of 
the wind power producer. A deviation penalty between day-
ahead bid and real-time delivery tends to drive the bids closer to 
the expected generation for the next day. 
 

Index Terms—Wind power, electricity markets, risk 
management, contracting, forecasting, bidding, stochastic 
simulations. 

NOMENCLATURE 
The following symbols are used in the paper: 
 ,  projected operating profit, hour h (h = 1…24)ߨ 

scenario m (m = 1...M) [US$] ݍ,  quantity bid into day-ahead market, hour h [MW] ݍோ்,   quantity bid into real-time market, hour h [MW] ݍௗ,   quantity delivered, hour h, scenario m [MW] ,   projected day-ahead price, hour h, scenario m 
[US$/MWh] ோ்,   projected real-time price, hour h, scenario m 
[US$/MWh] ܾݎ  probability of scenario m ݊݁ோ்ା   penalty multiplier (<1) for positive deviations 
between real-time bid and delivery 

                                                           
The authors acknowledge the U.S. Department of Energy, Office of 

Energy Efficiency and Renewable Energy through its Wind and Hydropower 
Technologies Program for funding the research presented in this paper. 

A. Botterud and J. Wang are with Argonne National Laboratory, USA 
(e-mails: abotterud@anl.gov, jianhui.wang@anl.gov). 

R.J. Bessa (supported by FCT - Fundação para a Ciência e Tecnologia 
PhD Scholarship SFRH/BD/33738/2009), H. Keko, and V. Miranda are with 
INESC Porto and Faculty of Engineering of the University of Porto, Portugal 
(e-mails: rbessa@inescporto.pt, hkeko@inescporto.pt, vmiranda@ 
inescporto.pt). 

 ோ்ି penalty multiplier (>1) for negative deviations݊݁  
between real-time bid and delivery 

  penalty for deviation between day-ahead bid and݊݁  
real-time delivery [US$/MWh] ܷሺߨሻ utility, hour h, scenario m 

β risk parameter in utility function 
CVARh conditional value at risk, hour h 
th threshold for CVAR 
w weight assigned to CVAR 

I.  INTRODUCTION 
ifferent countries and regions are introducing policies 
aimed at lowering the environmental footprint from the 

energy sector and increasing the use of renewable energy. For 
instance, the European Union is trying to implement its 
ambitious 20/20/20 targets by 2020, which aim at reducing 
greenhouse gas emissions by 20% (compared to 1990 
emissions), increasing the amount of renewable energy to 
20%, and reducing the overall energy consumption by 20% 
through energy efficiency [1]. In the United States, a number 
of initiatives have been taken at the state level, from 
renewable portfolio standards [2] to regional greenhouse gas 
emission control schemes. Within the federal government, 
new energy and environmental policies and goals are also 
currently being considered, such as a cap-and-trade program 
for climate emissions and a renewable energy standard. These 
policies are likely to substantially increase the use of 
renewable energy. Many other countries, including China and 
India, are also focusing on increasing the amount of renewable 
energy in their electricity supply. 

The global installed capacity of wind power is increasing 
rapidly, with a total of 120.8 GW installed at the end of 2008 
[3]. The United States, Germany, Spain, and China are the 
leading countries in terms of installed wind capacity, with the 
United States and China seeing the largest additions of new 
capacity in 2008. In a recent report [4], the U.S. Department of 
Energy (DOE) describes a model-based scenario, where wind 
energy provides 20% of the U.S. electricity demand in 2030. 
The report argues that this is feasible and discusses a set of 
technical and economic challenges that have to be overcome 
for this scenario to unfold. 

With the rapid increase in wind power capacity, it becomes 
increasingly important to find optimal strategies for wind 
power producers to sell their generation into the electricity 
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market. Financial risk management is therefore an important 
tool for finding the optimal balance between risk and return. 
The optimal strategy depends not only on the risk preferences 
of the producer, but also on the requirements of the financing 
institutions. So far, most of the wind power in the United 
States has been sold on long-term power purchasing 
agreements (PPAs). However, there is an increasing interest in 
merchant wind generation, and some of the U.S. wind 
generation is already being sold directly into the day-ahead 
and real-time electricity markets [5]. 

In this paper, we discuss risk management, contracting, and 
bidding for wind power producers. We first give a brief 
overview of PPAs, and discuss the risk involved in selling 
wind power through PPAs. In Section III, we give a brief 
introduction to wind power forecasting and with particular 
focus on how uncertainty can be represented in wind power 
forecasts. Section IV discusses optimal bidding of wind power 
in the electricity market. In particular, we focus on how wind 
power producers can take advantage of wind power 
forecasting when bidding into the electricity market. We also 
propose a mathematical model for optimal wind power 
bidding under uncertainty in wind generation, day-ahead and 
real-time prices. Section V present results from a case study 
from a wind power site in the United States. We conclude by 
summarizing the main findings in the discussion and case 
study. 

II.  POWER PURCHASING AGREEMENTS (PPAS) 
PPAs are long-term contracts between a wind power 

producer and a purchaser of wind power. In the United States, 
about 70% of the installed wind power through 2008 was sold 
through a PPA, with investor-owned utilities being the most 
frequent purchaser of PPAs, followed by publicly owned 
utilities and power marketers [5]. The PPA determines the 
price for delivered wind power for a long time period, 
typically 20 years. The development of energy prices for wind 
power PPAs is discussed in [5] and shown in Fig. 1. Note that 
these prices include state and federal incentives, such as 
renewable energy credits (RECs) and the wind power 
production tax credit (PTC).1 The PPA prices have risen 
somewhat over the last few years, mainly due to the higher 
cost of materials. The prices can be compared to the current 
cost of building new wind capacity, as estimated in [4] and 
shown in Fig. 2. When comparing the two figures, and 
adjusting for the financial incentives included in the PPA 
prices in Fig. 1 (the current PTC is US$21/MWh), we see that 
wind PPA prices are within the lowest range of the estimated 
levelized cost of wind energy. 
 

                                                           
1 Specific incentives for investments in renewable generation, such as 

renewable energy standards (RES), RECs, and the PTC add important revenue 
on top of the income from energy sales for wind power producers. In the 
United States, the PTC is a national program, whereas other incentives vary 
among the states. 

  

Fig. 1.  Cumulative capacity-weighted average wind power prices for PPAs, 
1999–2008. Source: [5]. 
 

 
Fig. 2.  Supply curve for wind energy, including transmission access cost, but 
excluding production tax credits and other incentives. Source: [4]. 
 

In addition to specifying the price for delivered wind 
power, which could either be fixed or vary by time, the PPA 
also determines a number of other conditions for the sales of 
wind power. According to [6], the PPA typically specifies the 
terms for important issues such as the length of the agreement, 
the commissioning process, the purchase and sale of energy, 
curtailment agreements, transmission issues, milestones and 
defaults, credit, insurance, and environmental attributes or 
credits. The exact risk exposure of the wind power producer 
depends on the terms of the individual PPAs. However, 
although the price is fixed by the PPA, in most cases the 
producer still faces considerable risk in terms of the quantity 
of wind power produced from the wind farms. 

III.  WIND POWER FORECASTING AND SCENARIO GENERATION 
An advanced wind power forecasting system uses input 

data from different sources, including results from numerical 
weather prediction models (NWPs), local meteorological 
measurements, SCADA data (i.e., active power generated), 
and additional information about the characteristics of the 
wind power plants and the nearby terrain and topography. The 
performance of wind power forecasts and the forecast 
accuracy depend on several factors, e.g., NWP forecasts, 
complexity of the terrain, and the availability of real-time 
weather and power plant data. There can be large differences 
in forecasting errors between wind power plants at different 
locations. Wind power forecasting systems typically produce 
forecasts for a time horizon between 1 hour and 2–3 days 
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ahead in time. In general, the forecasting error increases with 
the forecast horizon. A detailed description of state-of-the art 
wind power forecasting is provided in [7]. 

The uncertainty in the wind power forecast is obviously of 
importance for a wind power producer bidding into the 
electricity market, since the realized wind generation to a large 
extent determines the profits. There are several different 
approaches for modeling uncertainty in the projected wind 
power, as explained in [7], including probabilistic 
representations, risk indices, and scenarios. In this paper, we 
use the approach described in [8] to produce probabilistic 
forecasts based on the wind power point forecast errors. The 
model employs a linear quantile regression with the base 
functions formulated as cubic B-splines in order to obtain the 
quantile with a proportion of the forecast errors. In [8], each 
quantile is modeled as a sum of the nonlinear smooth 
functions of the forecasted wind power generation. Spline 
bases are used to approximate each of the smooth functions as 
a linear combination of base functions. The probabilistic 
forecast is represented through a set of quantiles ranging from 
0.05 to 0.95 with a 0.05 increment. 

The method described in [9] is used to generate a number 
of wind power scenarios that provide information on the 
dependency of the prediction errors through the set of look-
ahead times. The method is based on the conversion of the set 
of random variables composing probabilistic forecast series, as 
obtained with the quantile regression method described above, 
into a multivariate Gaussian random variable. The temporal 
interdependence structure is represented by the covariance 
matrix, which is recursively estimated because of the 
nonstationary characteristics. Monte Carlo simulation is used 
for the generation of equiprobable scenarios. Illustrations of 
the resulting forecast quantiles (which are equivalent to 
forecast intervals) and scenarios are provided in Fig. 3 and 
Fig. 4. The forecasts in the two figures are used in the case 
study in Section V. 

 
 

 
 

Fig. 3.  Probabilistic representation of wind power forecast as intervals or 
quantiles. 

 
 

 
 

Fig. 4.  Forecast scenarios of wind power generation. 

IV.  OPTIMAL BIDDING IN THE WHOLESALE MARKET 
Wind power producers may benefit from increased profits, 

possibly at the expense of higher risk, by participating in the 
wholesale electricity market instead of selling their generation 
in PPAs. The potential benefits of participating in the short-
term markets obviously depend on the development of market 
prices compared to the prices of PPAs. However, the strategy 
for bidding in the day-ahead and real-time markets will also 
influence revenues, imbalance costs, and affect the overall 
profit for the wind power producer. 

Bidding and trading of wind power in short-term electricity 
markets is still a relatively new problem. Some analytical 
approaches to the problem have been proposed in [10] [11] 
[12], with applications to electricity markets in Europe. The 
focus in these approaches is to minimize the imbalance costs 
from trading wind energy. The imbalance costs, in turn, 
depend on the rules governing dispatch and financial 
settlement in the respective electricity market. In this paper, 
we focus on bidding of wind power in the context of U.S. 
electricity markets. An overview of how wind power is 
currently handled in U.S. electricity markets can be found in 
[13], whereas [14] contains a discussion on the role of wind 
power forecasting in market operations. Many of the system 
operators (ISO/RTOs) are working on revising their current 
rules to better accommodate wind power. Additional changes 
in the market designs and settlement rules are therefore likely 
to emerge, as more wind power is introduced in different 
regions of the United States. In our analysis of bidding 
strategies, we base our assumptions on current rules 
representative for some U.S. markets. 

Below, we present a simple mathematical model for 
optimal bidding of wind power in the electricity market. We 
use scenarios to represent the forecast uncertainty, as 
discussed in Section III. The scenarios are used to calculate 
probability distributions for the wind power producer’s profit 
as a function of different bidding strategies, also taking into 
account uncertainty in market prices. Uncertainties in hourly 
wind power generation, day-ahead prices, and real-time prices 
are all represented in terms of scenarios. Note that the scenario 
representation allows for the representation of correlation 
between the random variables, as long as this is taken into 
account in the scenario generation. 
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A.  Wind Power Profits  
First, let us assume that the wind power producer can bid 

into the day-ahead market and is allowed to revise its bids 
ahead of the real-time market clearing. There is a penalty for 
deviations between the real-time bid and the delivered 
generation. The resulting profit of the wind power producer 
for one realization of scenarios for wind power and prices, ߨ, is shown in (1): 

ߨ  ൌ , · ,ݍ  ோ், · ൫ݍோ், െ ,൯ݍ                 ோ், · ோ்݊݁ · ൫ݍௗ, െ ோ்,ݍ ൯   
(1) 

 
where ݊݁ோ் is equal to ݊݁ோ்ା -ோ்ି if the deviation in real݊݁/
time delivery, ݍௗ, െ ோ்,ݍ , is positive/negative. 

For the wind power producer there are two decisions, 
i.e., to determine the amount of power to bid into: (1) the day-
ahead market and (2) the real-time market. These two 
decisions can be regarded as first- and second-stage decisions. 
The first-stage decision must be based on the best available 
wind power forecast at the day-ahead stage, whereas the 
second-stage decision can take advantage of better forecasts 
available closer to real time. Note that both day-ahead and 
real-time prices are uncertain at the day-ahead stage, whereas 
the real-time price is still uncertain at the real-time stage. The 
optimal bidding strategy at the day-ahead stage therefore 
depends on the price distributions for both day-ahead and real-
time prices, in addition to the wind power forecast. In contrast, 
the optimal real-time bid will always be to bid according to the 
best available point forecast for real-time generation, as long 
as penalties are being charged for deviations from the real-
time schedule. The main objective is therefore to find the 
optimal day-ahead bidding strategy. 

Most U.S. electricity markets allow wind power producers 
to bid into the day-ahead market, but not into the real-time 
market.2 A simpler and somewhat more relevant formulation 
of the wind power producer’s profit under current conditions 
in many markets is therefore shown in (2): 

ߨ  ൌ , · ,ݍ  ோ், · ൫ݍௗ, െ ,൯ݍ                 ݊݁ · หݍௗ, െ ோ்,ݍ ห   (2) 

 
Under this formulation, the deviation between day-ahead 

bid and real-time delivery is settled at the real-time price. In 
addition, a potential penalty is introduced, which depends on 
the absolute deviation between day-ahead bid and real-time 
delivery. Note that the wind power producer has an incentive 
to curtail its generation whenever the real-time price drops 
below 0, a phenomenon that quite frequently occurs in 
markets with locational marginal prices and a high penetration 
of wind power. Modern wind power plants can easily be 
controlled to shut down their generation in such situations. 
                                                           

2 However, some electricity markets, like the New York ISO, require that 
the wind power producers bid into the real-time market based on the system 
operator’s own forecast [15]. At the same time, the wind power producers 
must follow dispatch signals during constrained conditions in the network. 
This procedure contributes to relieve system constraints and also prevents 
wind power producers from being dispatched during negative prices. 

B.  Day-Ahead Bidding Decision Criteria 
If we assume that the wind power producer is risk neutral, 

the optimal bidding strategy can be derived by maximizing the 
expected profit, ߨכ , as shown in (3). An alternative 
formulation, which considers the wind power producers risk 
preferences, is to maximize the expected utility, ܷכ, as shown 
in (4). We assume that a standard exponential utility function, ܷሺߨሻ, can be defined for the wind power producer over the 
range of possible profit outcomes. The risk attitude is 
determined by a parameter, β, where a positive/negative β 
refers to risk prone/averse decision maker. Finally, another 
decision method which also considers the risk preferences of 
the decision maker, is to consider a balance between mean 
profit and risk. In this case, we measure the risk in terms of the 
conditional value at risk [16], i.e., the expected profit below a 
certain threshold defined by th, e.g., the 5% lowest profit 
outcomes. An objective function, ܥכ, taking into account both 
expected profit and CVARh is shown in (5). The parameter w 
determines the weight assigned to CVARh. 

כߨ  ൌ ವಲ,ݔܽܯ ∑ ܾݎ · ,ሻெୀଵݍሺߨ     
 

(3)

ܷכ ൌ ವಲ,ݔܽܯ ∑ ெୀଵܾݎ · ܷሺߨሺݍ,ሻሻ   (4)

where  

           ܷ ൌ ଵଵିഁ · 1 െ ݁ ഁሺഏషഏഏೌೣషഏ 

כܥ   ൌ ವಲ,ݔܽܯ  ൝  ܾݎ · ,൯ெݍ൫ߨ 
ୀଵ  ݓ 
· ,,,ݍሺܴܣܸܥ  ሻൡ݄ݐ

(5)

 
The decision criteria outlined above can all easily be 

derived from the scenarios for prices and wind power 
generation. No inter-temporal constraints are considered, so 
each hour can be analyzed independently. In the initial case 
study presented below, we illustrate how the decision criteria 
influence the optimal bidding decisions. 

V.  CASE STUDY 

A.  Assumptions 
We analyze the bidding of a hypothetical wind farm in the 

state of Illinois, using data for one historical day (i.e., 
Monday, October 9, 2006). The hypothetical wind farm lies 
within the footprint of the Midwest ISO (MISO). The wind 
power data used are day-ahead wind power point forecasts and 
realized generation from one location (site 4848) in the 
National Renewable Energy Laboratory’s Eastern Wind 
Integration and Transmission Study (EWITS) [17]. The 
EWITS data were produced by combining a mesoscale 
weather model with a composite power curve for a number of 
potential sites for wind power farms in the United States. The 
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day-ahead forecasts were generated based on observed 
forecast errors from four real wind power plants. The resulting 
Markov chain forecast models for each of the four sites were 
randomly assigned to the hypothetical sites in the data set to 
generate day-ahead forecasts. The data methodology is 
explained in [18]. 

We use the wind power data (forecasts and realized 
generation) for the individual site for the period from January 
to August 2006 to train the quantile regression, as described in 
Section III. The months from September to December are used 
as a test dataset. Since the first month is used to initialize the 
estimation of the covariance matrix only, the scenarios are 
produced for October, November and December. A total of 
1,000 scenarios of wind power generation are generated for 
each day. We only look at one individual day (i.e. October 9), 
in this initial illustrative case study. The deterministic point 
forecast and 10 forecast scenarios are shown in Fig. 5. The 
figure illustrates that forecast scenarios span a relatively wide 
range around the point forecast. The underlying quantile 
distribution for the same day is shown in Fig. 3. 
 

 
Fig. 5.  Deterministic price forecast (solid thick line) and 10 forecast 

scenarios. 
 

We assume that the wind power producer makes a 
prediction of day-ahead and real-time prices for the next day, 
based on the most recent prices observed in the market. 
Separate price projections are derived for each individual 
hour. In this initial study, we simply use a normal distribution 
to represent the uncertainty in the hourly prices.3 Hourly price 
means, standard deviations, and correlations between day-
ahead and real-time price are obtained from the last 4 weeks 
ahead of the trading day, separating between weekdays and 
weekend days. In the initial study, we assume that prices and 
wind generation are uncorrelated.4  

We use market price data for weekdays from the 4 weeks 
before October 9, 2006, from the Illinois trading hub in MISO 
to estimate the price parameters for each individual hour. Fig. 
6 shows that the mean real-time prices are much lower than 
day-ahead prices at night, whereas the mean real-time price is 
higher for a few hours during the day. Also, the uncertainty 

                                                           
3 The modeling framework based on Monte-Carlo simulations could easily 

accommodate more advanced price models. 
4 This is clearly a simplifying assumption. In areas with large wind 

penetration, it is likely to be a negative relationship between the amount of 
wind generation and the market prices. 

(standard deviation) is much higher in real-time prices than in 
day-ahead prices. Finally, Monte-Carlo simulation generates 
1,000 scenarios for day-ahead and real-time prices for each 
hour based on the parameters in Fig. 6. The price scenarios are 
combined with wind power scenarios described above. The 
resulting set of scenarios is used to evaluate day-ahead 
bidding, market profits, and risk measures under different 
decision criteria, as outlined in Section IV. The profit 
formulation in (2) is used in the analysis, with the assumption 
that the wind generation is curtailed to zero whenever the real-
time price drops below zero. The day-ahead bid quantity can 
take any value between zero and the installed capacity of the 
wind farm. 
 

 
Fig. 6.  Estimated day-ahead (DA) and real-time (RT) price parameters. 

 

B.  Results 
We first present results for one individual hour, looking at 

how the decision criteria change as a function of day-ahead 
bid. We then calculate the optimal bidding decisions for all the 
hours of the day. We analyze the impact of different decision 
criteria and how a deviation penalty influences the outcome. 

For the utility decision criteria in (4), we assume that the 
risk parameter, β, is either -3 (risk averse) or 3 (risk prone). 
For the CVAR decision criteria in (5), we assume a CVAR 
threshold, th, of 5% and a weight, w, of 0.1. 

 
    1)  Analysis of bidding in hour 5 
 

In hour 5, the mean day-ahead price is higher than the mean 
real-time price (US$25.5/MWh vs. US$24.0/MWh), but the 
standard deviation is higher for the real-time price (25.9 vs. 
4.5). The wind power point forecast for hour 5, which 
represents the projected wind generation for this hour, is 
17.4% of installed capacity. Fig. 7 shows that the expected 
profit (E) increases monotonically as a function of the fraction 
of the capacity bid into the day-ahead market. The higher 
expected day-ahead price leads the profit maximizer to bid all 
its quantity into the day-ahead market, since any shortfall in 
generation can be bought back at the real-time price, which is 
expected to be lower than the day-ahead price. Hence, the 
resulting decision does not take into account the expected 
wind generation for that hour. In contrast, the CVAR criteria 
add more weight to the lowest profit outcomes. This leads to 
much less bidding in the day-ahead market in this hour, 
reducing the exposure to the real-time price. The utility 
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criterion (Fig. 8) shows that a risk prone producer will bid the 
full capacity in the day-ahead market. A risk averse producer 
would want to bid approximately 40% of capacity into the 
day-ahead market in hour 5. 

 

 
Fig. 7.  Expected profit (E) and CVAR criteria (C) as function of day-ahead 

bid quantity, no deviation penalty. 
 

 
Fig. 8.  Expected utility for risk averse (β = -3) and risk prone (β = 3) decision 

maker, no deviation penalty. 
 
So far, we have assumed that there is no penalty for the 

deviation between day-ahead bid and real-time delivery. We 
now repeat the same analysis with a deviation penalty of 
US$5/MWh. The results are shown in Fig. 9 and Fig. 10. 
Under the expected profit criterion, the wind power producer 
now bids much less into the day-ahead market to avoid high 
deviation penalties. The optimal bid under the CVAR criterion 
is to increase the day-ahead bid slightly compared to the case 
without a deviation penalty. The risk averse utility criterion 
gives less day-ahead bidding. Note that the deviation penalty 
gives optimal bids much closer to the projected wind 
generation of 0.174 under all three criteria. In contrast, the 
risk-prone utility criterion is less concerned with risk of 
deviation penalties and still finds it optimal to bid all capacity 
into the day-ahead market. 

 

 
Fig. 9.  Expected profit (E) and CVAR criteria (C) as function of day-ahead 

bid quantity, US$5/MWh deviation penalty. 
 

 
Fig. 10.  Expected utility for risk averse (β = -3) and risk prone (β = 3) 

decision maker, US$5/MWh deviation penalty. 
 
    2)  Optimal bidding strategies over 24 hours 
 

We now look at the optimal bidding strategy for the entire 
day (i.e., 24 hours). A search algorithm is used to derive the 
optimal bids for the different decision criteria. Fig. 11 shows 
that under the expected profit criterion, the optimal decision is 
to bid full capacity in the day-ahead market whenever the 
expected day-ahead price is above the expected real-time 
price. No capacity is bid into the day-ahead market when the 
expected real-time price is higher than the expected day-ahead 
price under this criterion. The risk prone utility criterion gives 
almost exactly the same results (not included in Fig. 11). With 
the CVAR and risk-averse utility criteria, the optimal bid is in 
between the maximum and minimum capacity in hours with a 
small difference in expected day-ahead and real-time price. 
The bid quantity tends to be higher with the utility criterion 
than with the CVAR criterion. Overall, the decision strategies 
are mainly driven by the price expectations, as long as there is 
no deviation penalty. A deviation penalty would bring the bids 
closer to the projected generation (i.e., the point forecast), as 
shown in the analysis of hour 5. 
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Fig. 11.  Optimal day-ahead bidding under different decision criteria for 

24 hours. No deviation penalty. pf is the point forecast. 

VI.  CONCLUSION 
Although most wind power generation in the United States 

is sold on long-term contracts, a significant share of wind 
generation is sold directly in the electricity market. For this 
merchant wind generation, it is important to the find the right 
balance between risk and return when bidding into the 
electricity market. In a simple case study, we have analyzed 
the optimal bid quantity in the day-ahead market. The results 
show that the optimal day-ahead bid is highly dependent on 
the expected day-ahead and real-time prices, but also on the 
risk preferences of the wind power producer, as reflected in 
the decision criteria. A deviation penalty between day-ahead 
bid and real-time delivery tends to drive the bids closer to the 
expected generation for the next day. 

We would like to emphasize that the analysis presented in 
this paper is preliminary and built on a number of simplifying 
assumptions. As we proceed with our research in this area, we 
will add more realism to the analysis by introducing more 
advanced price models, which capture the relationship 
between wind generation and market prices. We will also 
consider alternative market rules and profit formulations to 
analyze in greater detail how market design influences the 
optimal bidding decisions. Another interesting extension of 
the analysis is to consider the optimal market strategies for a 
portfolio of assets consisting of other types of generation and 
possibly also demand resources, in addition to wind power. 
Finally, we will evaluate the performance of different market 
strategies by simulating a longer historical time period, and 
asses the results for realized wind generation. 
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