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Forecasting Issues for Managing a Portfolio of
Electric Vehicles under a Smart Grid Paradigm

R.J. Bessa and M.A. Matdglember IEEE

Abstract—In order to participate in the electricity market,
electric vehicles (EV) need to be aggregated by aamket agent,
since the current rules do not allow the participaibn of small
loads. The EV aggregator purchases electrical eneyg for
charging its clients, and can offer reserve servise This activity
requires forecasting methods for several variablesThis paper
presents a global view of the relevant variables foan EV
aggregation agent participating in the electricity market and
discusses the associated forecasting issues. Thadldforecast
problem for direct and indirect control of the EV charging
process is discussed. Variables from the market-@¢d such as
reserve price and direction, are also addressed. [sting
approaches are reviewed, discussed and tested adtiog to
different metrics.

Index Terms—Electric vehicle, forecasting, electricity market,
demand dispatch, demand response, reserve.

|I. INTRODUCTION

HE integration of flexible loads in the electricityarket,
in particular for supplying ancillary services, gaining

electricity market. For an EV aggregator with direontrol
over the charging process, Wet al. [6] described an
algorithm for purchasing electrical energy at thmwdst
possible cost in the day-ahead market. For an gggye with
indirect control, Wuet al. [7] discussed pricing schemes for
promoting the participation of EV in frequency région
services.

The minimization of the purchasing cost also resglir
forecasts for the electrical energy price of dageaah intraday
and real-time sessions. There are several pulditatabout
this topic [8][9].

Furthermore, for selling reserve services, in aoldito the
EV consumption and electrical energy price, forecad the
direction of mobilized reserve (i.e., upward or devard) and
the price of available and used reserve capacity, very
valuable for several optimization problems [10]{[120 our
knowledge, only Jonsson [13] proposed models faxdasting
the regulation direction in the Danish regulatioowpr
market. The goal was to use this information fompating
the optimal selling bids of a wind farm [14]. Inetlpresent

importance inside a smart grid paradigm with adedncpaper, similar variables are addressed, but relatedhe
metering and bidirectional communication [1][2].€Thlectric participation of EV in secondary and tertiary resemarkets.
vehicle (EV) is a highly flexible load that whengaggated by In some DR programs, the bids for load reductienanly
a market agent can supply [3]. A discussion abdwg tactivated if the market price is above a threshmat [15].
participation of EV in future electricity marketesigned for Thus, in this DR markets it is useful to have a&ast for the

accommodating this type of load is described in [4]
The EV aggregator acts as an intermediate entityed®n
drivers, transmission system operator (TSO), distidn

market price divided by classes (i.e., price thoéd) or for
price spikes, instead of a typical numerical fostca
The possibility of forecasting these variablesissdssed in

system operator (DSO) and the electricity markehisT this paper by presenting examples from real datd an

aggregation agent, depending on its business madél,
control its clients’ consumption rates with two pibde
modes: direct control by sending control signals the
charging process; indirect control by sending psi@mals to
induce a certain reaction from the load. The fisttrol mode

reviewing work from the state-of-the-art. The main
contribution from this paper is a global view ofthelevant
variables for demand optimization in the electyicitarket, as
well as pointing research directions for furtherkvdNote that
the EV is given as an example, but the ideas déstli this

is called demand dispatcH5], while the second is calledpaper can be generalized to other type of loads.

demand respong®R).

In both cases, the aggregator needs to forecasiffietive
consumption from the EV under contract.
forecasting algorithms are needed for each contoule.

The forecasted EV consumption is an input of optation
problems that derive the optimal purchasing bid fhe
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The paper is organized as follows: section Il dises the
variables related with the demand-side; sectiorditcusses

Specializétle variables related with the electricity marksgction 1V

presents the conclusions.

Il. VARIABLES ON THE DEMAND-SIDE

The EV aggregator will participate in the reservesrket
under the same rules as generating units. Thusddtining
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The vehicle-to-grid (V2G) mode is not consideredthis
paper. Instead, the reserve is supplied by coriegiea
preferred operating point from which the chargirageris
increased (downward reserve) or decreased (upvesehe)
5]

A. Controllable EV Consumption — Demand Dispatch

The objective of an aggregator with direct contreér the
charging rates, and participating in the electrieslergy
market, is the minimization of wholesale cost. Tieblem is
solved with an optimization algorithm that placks tharging
in the hours with lowest prices [6][10].

However, it is necessary a forecast of how muchtedzl
energy will be needed in the next hours or dayseéasting
the load is a usual task in problems related witvgr system
operation and electricity markets. However, thebfm is
different for an aggregator with direct control.i¥means that
the classical methods for forecasting the load achetime
interval cannot be strictly followed because thgragator is
forecasting a variable that controls partiallyte same time.

The alternative approach is to forecast the twaabées
illustrated in Fig. 1: the charging requirement avdilability
period. The EV availability is the time-period wheahe EV is
plugged-in for charging. Note that the EV mightdagked but
not available for charging. The charging requiretn@neach
EV is the total electrical energy needed to getfitbe initial
(i.e., when the EV arrives for charging) state-b&ge (SOC)
to the target SOC defined by the EV driver for trext trip,

and including the losses from the charger. A clmaygithe first time

requirement value is always associated to an dikija
period.

This forecasting problem resembles the
demand forecasting for service parts inventoriemetsil store
sales, addressed by the pioneer work of Crostoh &bé
further explored by other authors [17]. As in thé &ase, the
demand appears randomly and with periods of zemadd.

The forecasting algorithm for the EV problem cotssis
two steps: first, forecast the availability periofl each EV,
and then, the charging requirement for the forechgieriod.
The forecasting method was inspired by [18], amdetailed
description is provided in [19].

The availability period is a binary time seriesttban be
modelled and forecasted with a generalized lineadeah
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periods change with the look-ahead time steps,enthi¢ first
three lags are fixed for each model. The outpuhefGLM is
the posterior probabilitp(y=1|.) that is a function of lagged
variables of the response varialle

SOC"=50% SOCe"9=100%
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21:30 8:30
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(1) Availability Period
(2) Charging Requirement = 11.11 kWh
(90% of charger efficiency)

Fig. 1. Availability period and charging requirerhefian EV.

For a time horizon witlk time steps, it is necessary toKit
GLM models to each EV. This task, using non-linesrdels
such as neural networks (NN) [22] or support veatachines
(SVM) [23], demands a high computational effort.ushthe
use of simple and linear models is recommended, iand
needed, generalized additive models (using splicas) be
used for capturing non-linear relations betweemnatées [24].

After forecasting the availability period, the agsponding
charging requirement is estimated with non-parametr
bootstrapping [20]. The bootstrap samples are ¢iomedid to
the number of hours the EV is plugged-in. For examnfor
interval of the availability periodthe
bootstrapping technique only resamples from the¢ohsl
consumption from the same time interval. The samegqgss is

intermittefallowed for the subsequent hours. The sum of thetdirap

samples over the complete availability period givibe
charging requirement forecast.

The output of the forecasting algorithm is illustchin Fig.
2 where the forecast (in grey) and the realizede/éiin black)
of the availability period for one EV in a 100 halburs time
horizon period are depicted. The EV time seriessgrehetic
and generated with the method described in [25].

These forecasts show three different situationghénfirst
period, the forecasted departure instant is eartighe second
period the forecasted arrival and departure instémtnot
match with the realized ones; in the final peribd forecasted

(GLM), where the response variable follows a birmimideparture time is later than the realized one.

distribution [20]. For producing multi-step aheadpinomial
GLM is fitted for each look-ahead time step asdaté:
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note that the lags related with the daily and weeklasonal

Based on the forecasted periods, the bootstrapping
approach estimated a charging requirement of 1RVBR for
the period between intervals 1 and 14 (the realizdde was
17.03 kWh for a period 1-17), for the period betwégervals

45 and 67 the estimated charging requirement w&61K\Wh

(the realized value was 11.15 kWh for a period 2},-énd for

the period between 73 and 90 intervals the estiincttarging

requirement was 10.43 kWh (the realized value was BWh

for the period 73-86).

1) Case-Study Results

The forecasting methodology was tested in synthatie
series of 844 EV. These drivers only charge theaEthe end
of the day and in slow charging points. Fig. 3 depithe



accuracy (for a 100 half-hours time horizon) of dvailability ZN Qy_ _ 9‘)
forecast for each EV. The accuracy is computedimafs: MMAPE= FlNij()J (4)
\Y;
TP TP =
= 3 . . . .
Accuracy= \/TP+ FP DTP+ EN (100 ®) Fig. 4 depicts the mMAPE as a function of the aggten

size. For each aggregation size, the mMMAPE is coeapfor
whereTP is the number of correct plugged-in predictiongjtferent combinations of EV, and the results agpidted by a
(true positives)FN is the number of wrong zero predictiong,oxpiot. As expected, the error decreases when the
(false negative) anP is the number of wrong plugged-ingggregation size increases. For 844 EV, the mMABE i

predictions (false positive). 13.64%.
a - For evaluating the charging requirement estimatid thie
- [7 bootstrapping technique, a perfect forecast for the
® availability is used. This removes the influence thie
. availability forecast errors. Fig. 5 depicts thejlots for the
% 31 mMMAPE as a function of the aggregation size. Fothea
2 aggregation size, the mMAPE was computed for difier
z S| combinations of EV. The mMAPE decreases when the
~ | aggregation size increases, and its value is 8.26&%can
° aggregation size of 844 EV.
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The accuracy on average is around 78%. Howevergsom 1o T & 5 H
forecasts, that have in common a low number of $iauith T s s, - &
the EV plugged-in, present a low accuracy. For g{aman 51 r
EV driver with a forecast of accuracy equal to 43k only 10025 75 125 175 225 275;125;2?;\,2 > 475525 575 625 675 844

. . o ) .
plqued I,n durlng 24.60% of a, one-year Pe”Od', §x11mple, Fig. 5. MMAPE of the EV charging requirements fastowith bootstrap (and
an EV with 80% of accuracy is plugged-in during®2.of perfect availability forecast) for different aggatign sizes.

the time. It is well known from the literature thambalanced

datasets are more difficult to predict. Thus, fatuvork B. Price Responsive EV Consumption — Demand Rsspon

consists in developing methods for unbalanced pirtane In the DR control mode, the aggregator sends pigeals
series. for indirect control. The price signal can be thal#time price,
To evaluate the quality of availability forecast of' the forecasted day-ahead electricity marketeprar any

aggregated EV, the modified mean absolute percergagr tariff \{alue defined by t_he aggregator for_gettiagcertain
(MMAPE) is used: behavior from the EV. With the adequate price,dabgregator

can induce the following behavior: load shift frdmigh to low



price periods; consumption reduction that can Herefl as
upward reserve; consumption increase that can teeedf as
downward reserve.

The idea of using price signals for controlling #nh@ads
and supplying services in the Danish regulation gromarket
is being studied in the Flexpower project [26]. Aeeway
price signal that changes every five minutes insmgitted to
the loads. For example, when upward reserve isatkagrice
signal with high price for consuming is transmitteshd for
downward reserve the price is low. This frameworksw
identified in [4] as a promising opportunity for EV

In this problem, the aggregator needs to foredested on
historical data, the impact of the price signal e EV
consumption. In other words, the aggregator nee@stimate
the load as a function of the price signal to bénéd. This
task is complex because changes in one hour adfethe
other hours. David [27] proposed the concept oksitime
price elasticity that might be used for assessiog the EV
load will redistribute over a specific time-perimdresponse to
a price signal. Kirscheret al. [28] also explores similar
concepts: self-elasticity and cross-elasticity. $hH-elasticity
relates demand change with the price in that ialerand
cross-elasticity relates the demand change in meevial with
respect to the prices in the other intervals.

The analytical calculation of these elasticity dm#Ents
might be mathematically impracticable. Thereforde t
approach should consist in using machine-learniggrithms
for learning these relations from historical dd€hotanzadet
al. [29] described an algorithm based on fuzzy logic f
extracting rules relating the load behavior withe thrice
signal.

Only with time-varying prices, or voluntary parpaition, it
might be difficult to offer reserve with acceptalldiability,
mainly because the client might not adjust its comstion
based on the price signal. An alternative appraado have
the aggregator negotiating directly with the EV aftthas
installed software for negotiation) the provisidrthis service.
The participation is mandatory, when there is anperd
between aggregator and client. This resembles fhectd
control, however in this framework some EV will gnl
participate if the price offered during the negttia is
attractive, while in the direct control is the agggmtor who
decides who patrticipates.

lll. VARIABLES ON THEMARKET-SIDE

A. Reserve Direction

An important variable for defining the optimal bidd
strategy for reserve services is the reserve dmectThis
variable informs on the probable direction of teearve and
based on this information the aggregator can define
combined strategy for participating in the electrienergy and
reserve market. For example, if in a specific hdhe
probability of downward reserve probability is hjgthe
aggregator can offer a bid with a very low quan{dy zero) in
the electrical energy market and then offer theuireq
electrical energy for charging as downward reserve.

The reserve direction consists in two binary tireges, one
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for upward direction and another for downward. Tseparate
variables are considered because in a specific theureserve
can be mobilized in both directions.

The objective of this section is to evaluate theedast’s
feasibility for the secondary and tertiary resedieections,
using the Portuguese power system as a case:sfLity two
reserve categories are the same used in Portudalnathe
ENTSO-E (European Network of Transmission System
Operators for Electricity).

For this task, four different algorithms are test&LM
with the response variable following a binomialtdsition,
SVM, NN and naive Bayes (NB) [30].

The following variables are candidates in the reive
feature selection algorithm from the R package étaf31]:
lagged variables of the response variable, foredastectrical
energy price, forecasted wind power penetrafigreriodic
function for the hour of the day and week day.

The day-ahead price was forecasted with an ARIMA
model. The order of the model was selected with Fhe
package “forecast” [32], and the model with minimiC
(Akaike information criterion) was ARIMA(2,1,1)(7,D.

1) Results for Day-ahead Forecasts

First, the four algorithms are tested for day-ahfeaecasts.
The forecast for the 24 hours of day D+1 is produat 10
AM of day D. The selected variables for the upwsedondary
reserve direction were:

« lagged response variables24,t-48, t-72;
periodic function for the hour of the day.

Fig. 6 depicts a ROC (Receiver Operating Charastteyi
curve [33] with the results for the upward secogdaserve
obtained with the four algorithms. The diagonaklim the
ROC curve corresponds to a method that randomlgspsea
class (e.g., the flip of a coin). The x-axipécificity is the
percentage of negative labeled instances (i.e.,upward
reserve) that were predicted as negative, and tagisy
(sensitivity is the percentage of positive labeled instankas t
were predicted as positive. The ROC curve deplastitade-
off between these two metrics. The lower left pditd0, 0)
corresponds to assume that whp(y=1|x)>0 the binary
variable gets value 0; the upper right point (0Q)l8ssumes
that whernp(y=1|x)<1the binary variable gets value 1.

This ROC curve of Fig. 6 shows that all the forécasdels
are very close to a random guess predictor, meahiaigthe
predictor only extracts a small amount of inforraatfrom the
data. The results for the downward secondary resare not
presented here, but the conclusions are similar.

The four algorithms were also tested for the teytia
reserve. The selected variables for the upwardtgrteserve
direction were:

¢ lagged response variables: t-24, t-47,t-48, t-98Q; t-
168;

! The market data can be downloaded from http://wasvcado.ren.pt

2 The forecasted wind power penetration is the rdt@ween the
forecasted wind power and load for the Iberian Fara, which can be
downloaded from http://www.esios.ree.es

3 The lags t-1, t-2 and t-3 are not considered fay-ahead forecasts
because its influence in long-term horizons is igdgk.
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 periodic function for the hour of the day; reserve direction. This result has a physical exatian: the
« periodic function for the day of the week; secondary reserve, in general, handles random and
« forecasted wind power penetration; uncorrelated variations in the load-generation tega while
« forecasted day-ahead electrical energy price. the tertiary reserve (at least in Portugal) covetsr and intra

The curves for the tertiary reserve, depicted ig. i are hourly variations, less random and with higher niagie
much better compared to Fig. 6, since for the sspeeificity (€-9., forecast errors, unplanned outages). Fanple in [34]
shows higher sensitivity. The results for the dowrgweserve it is shown that tertiary reserve deployment ieetéd by the
are analogous. increasing wind power penetration, while secondasgrve is

These curves can be reduced to a single valueAtea Unaffected.

Under the ROC Curve (AUC). AUC is equivalent to the

probability that the classifier will rank a randgmthosen e S
positive instance higher than a randomly chosenatiegy
instance [33]. S -
Table | presents the AUC of the four models, andtlie
upward secondary and tertiary reserve. This tafbbevs that 3
. S o |
the best performance is from the NN for the secpnda = ©
reserve, and from the NB for the tertiary reserve. 2
Nevertheless, the GLM showed an acceptable perforenan 2 Q-
both reserves. In the secondary reserve, the SV Ni & GLM
presents an AUC below 0.5, this indicates a wosthteodel. NN
Table Il presents the AUC for the downward reserhes S SVM
this case, the AUC for secondary reserve are nmgtalese to NB
0.5, but still below 0.6, and this is considergabar predictor. o
For the downward reserve, the GLM and NB preseatbist (50 8*0 6b ‘0 2*0 (5
performance. The AUC values for the tertiary researe ! L4
. . . Specificity (%)
around 0.7, which is generally considered a redsena .
redictor Fig. 6. ROC curve for secondary upward reservectioe day-ahead forecast
p ’ obtained with GLM (generalized linear model), NNegnal network), SVM
(support vector machines), NB (naive Bayes).
TABLE |
AREA UNDER ANROCCURVE (AUC) FOR SECONDARY AND TERTIARY 8 |
UPWARD RESERVE =
Secondary Reserve  Tertiary Reserve
GLM 51.8 68.2 2
NN 54.5 61.8
SVM 47.8 57.9 <
NB 48.4 68.8 S o |
a(D
=
TABLE Il =
AREA UNDER ANROCCURVE (AUC) FOR SECONDARY AND TERTIARY S S
DOWNWARD RESERVE (%))
Secondary Reserve  Tertiary Reserve °
GLM 57.3 68.3 N ]
NN 57.4 67.8
SVM 57.2 61.1
NB 57.4 69.2 o

T T

T T
100 80 60 40 20 0
2) Results for Hour-ahead Forecasts Specificity (%)

. . Fig. 7. ROC curve for tertiary upward reserve dimet day-ahead forecast
F'g_' 8 deplgts th.e ROC curve for a one hour-aheeecast. obtained with GLM (generalized linear model), NNe@nal network), SVM
This time horizon is important for markets wherertg can (support vector machines), NB (naive Bayes).
pre_sent bids until 45 m|_nutes before the operapogr (e.g., B. Price for Available Reserve Capacity
tertiary reserve market in Portugal and the reguiapower . . . .
market in the Nordpool). The secondary reserve, in general, is paid by aap
As expected, the ROC performance is better thafigne Price (in €MW) and by a price for used reserveacafy (in
and 7. However, the improvement for the secondasgme €/MWh). The tertiary reserve, in general, is ongydoby used
was not substantial. The AUC was 0.59 for the seéapn '€SErve capacity. o _
reserve and 0.82 for the tertiary reserve. The price for used reserve capacity is only adcegsehe
The results presented in this section indicate thds next section. This section tackles the price forilable
possible to forecast the tertiary reserve directiord it is very €S€rve capacity, which is important for definirige thours
difficult to extract information for the time sesief secondary Where the aggregator should offer secondary resgpecity.
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To our knowledge, there are no publications aborgdasting case there is an associated income for havinguwesapacity
methods for this price. available in the ®hour.

For comparison, Fig. 9 depicts a boxplot for eastrrtwith Fig. 11 depicts the boxplots for the price of usediary
points of electrical energy price data from 201CPiortugal. upward reserve capacity. Compared to Fig. 9 andhl®time
The average pattern resembles the load patteriy, loiv series presents a higher number of outliers andhhidty.
prices in valley hours, and high prices in peakreo’he Moreover, even in valley hours there are a largeoSéours
boxplot for the reserve capacity price depictedFig. 10 with high upward reserve prices.
shows a completely different pattern with someexg price
values (e.g., 180 €/ MW) in valley hours. The higlte values

occur because there is a high concentration of ehagents § g 5
offering secondary reserve band. These two plotsvsh o 8 8 g °
distinct behavior from both time series. 2, ° E § g 0,
A forecasting exercise was conducted with thesitas % 34 - et e LT Ti%o
ARIMA models for the reserve capacity price. > T T T [ E
ol e
8 ﬁﬁﬁﬁﬁﬁ ST LS T
- Ry, uééggg
L Pliilvgegl g g8
o | o—ggiiiiioéggéggggég 0% o8
© | N I N A N N N N N AN H B N |
13 5 7 9 11 14 17 20 23
g o Hour
3 -
E" Fig. 9. Boxplot for the day-ahead electrical engugge in Portugal.
o i
El:') = O o o]
v —— Secondary Res.
S Tertiary Res. g | R
O O O
o g =
{ T T T T 1 < 2T °©
100 8 60 40 20 0 =
SpeCIﬁCIty(%) Ll OO0OO0O0O0O0O0D0D00D0O0D0O0O00O0O0O0D0OO0OO0OO0OO0
. gsscccaoooggg §§§0888 g
Fig. 8. ROC curve for a one hour-ahead forecash®upward secondary and 8 e T QQ oo § o 3 % °
tertiary reserve. QQQQQ
1) Case-Study Results S s

The results in terms of MAE (mean absolute error) a T T UL U LU
1 3 5 9 12 15 18 21 24

RMSE (root mean square error) for day-ahead fotecai®

presented in Table Ill. The ARIMA model for the eese Hour

capacity price was selected using the R packageec&st’ Fig. 10. Boxplot for the reserve capacity pricértugal.

[32]. This secondary reserve is normally schedutadthe TABLE Ill

next day, so only the day-ahead time horizon isvaatit. MAE AND RMSEERROR OF THE RESERVE CAPACITY AND ENERGY PRICES
The error of the reserve price forecast is lowerenvh _ MAE RMSE

compared to the energy price, and its value isabée. This Energy Price 6.45 9.47

hows that these two prices might require diffefergcasti ARIMA@2.1.1)(7,0.7)

shows that these two prices might require diffefergcasting Reserve Capacity Price 645 -

algorithms, but the forecast accuracy obtained witle ARIMA(7,1,1)(7,0,6) ’ '

ARIMA model for the reserve price is already satcsbry.

C. Price for Used Reserve Capacity In contrast to the energy and reserve capacityeptioe

series, this variable is an irregular time seriesdose the price
only exists when the reserve is used. The liteeataf
algorithms for irregular time series is scarceparticular for
easonal time series. To our knowledge, the onigkwabout
(Trregular seasonal time series is from Hanzak [3&k author
describes a modified Holt-Winters algorithm for lileg with
frregular time series that uses a different repradion for the
seasonal component.
Fig. 5 depicts an illustrative day with one stegadh
ecasts and realized price of the upward tertragerve in

For deciding the hours where to make tertiary resdids
the price for used reserve capacity is very impurt&or
example, the aggregator forecast an electricalggnerice of
25 €/MWh for the ¥ hour and a price for used downwar
reserve of 10 €/MWh for thé"thour. The obvious choice is to
consume in the ™ hour as downward tertiary reserve
However, if the realized value was 30 €/ MWh, thgragator
was better if it did not offered any reserve dhh@ur and used
the 4" for consuming at the electrical energy price. Th'l%r
information for secondary reserve is also importhat in this



Portugal. Note that in some time intervals theideytupward
reserve was not used, so there is no price foethuervals.

1) Case-Study Results

Table IV and V present the mean absolute error (V&
root mean square error (RMSE) for one-step andi+stgp
ahead forecasts of the upward and downward tertesgrve
prices in Portugal. The forecast error is signiftba high, in
particular for the multi-step ahead forecasts.

These results show that irregular time series \&ithigh
variability are difficult to forecast and new foesting
algorithms are needed for this type of series.Heurhore, it is
conceivable that these prices are influenced bgrotariables,
such as the load, wind power generation and etattenergy
price. Thus, future work consists in developing twatiate
models for irregular time series.
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Fig. 11. Boxplot for the price of used reserve citgan Portugal.
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Fig. 12. One step-ahead forecast for the upwaridhtgrreserve price in
Portugal.

TABLE IV
MAE AND RMSEERROR OF THE TERTIARY UPWARD RESERVE PRICE
MAE [€/MWh] RMSE
One step-ahead 8.21 13.32
Forecast for day D+1 made at 40
hour of day D (38 time steps) 12.98 17.76
TABLE V
MAE AND RMSEOF THE TERTIARY DOWNWARD RESERVE PRICE
MAE [€/MWh] RMSE
One step-ahead 8.55 11.75
H
Forecast for day D+1 made at 40 12,63 15.97

hour of day D (38 time steps)

D. Price Thresholds and Spikes

In some DR programs instead of forecasting thetratéy
price magnitude, it might be more useful to foréeaslass for
the price [15]. For example, forecast the probgbdf having
a price above 100 €/ MWh. In these DR programs, With
information the aggregator can plan the chargiracgss for
offering a load reduction in situations where tleetasted
price is above a certain threshold.

Furthermore, this forecast is also useful to ayricchasing
electricity in high price hours. For example, iethrobability
of having a high price in a specific hour is hite aggregator
does not submit a bid in that hour. This informatis a
complement to the numerical forecast for the price.

This consists in a classification problem that dobhve
more than two classes. Zareipoetr al. [36] addressed this
problem and proposed a forecasting framework tbatbines
feature selection algorithms and SVM. Huaag al. [37]
enhanced this work with the following contributiores new
method for constructing the input variables, arab@parison
between three feature selection algorithms and feoachine-
learning algorithms. The comparison showed that libet
feature selection algorithm was the correlationebdasThe
machine-learning algorithms with best performanarenthe
naive Bayes and the k-nearest neighbor.

Huanget al.[37] applied the price classification forecasts
to an industrial load. The load, if the electriealergy price is
above a certain threshold (i.e. cost of producitegtdcity
locally), starts a co-generation plant for satisfyithe needs
and sells the energy surplus. The results showat ttie
economic losses (with perfect forecast as refeperfiaam
using classical point forecasts are higher thatassiication
approach.

Zhao et al. [38] employed a similar approach to forecast
price spikes occurrence and value. The proposechadet
combines a feature selection algorithm with SVM and
probability classifier (based on the naive Bayegomthm).
The results showed that SVM achieves the best pedioce;
the classifier accuracy was 99.3%, against 98.9%thef
probability classifier. Moungt al. [39] forecast price spikes
with a regime-switching model, where the parameters a
function of time-varying variables.

The literature about this topic shows that if thealgis to
avoid consuming electricity or placing bids at hjgice hours
the chances of detecting price spikes are highesfecialized
approach (e.g., classification-based) is usedgeaubstof the
classical numerical forecast approach.

IV. CONCLUSIONS

This paper shows that in a smart-grid infrastruetand
with active participation of EV in the electricityarket, a set
of load and market variables forecasting algoritienseeded.

The problem of EV load forecasting will gain neweation
and new problems such as forecasting the resergetidin or
irregular time series deserve more attention in filteire.
When designing optimization algorithms for an EV
aggregator, it is necessary to take into accoumnttvw¥ariables
can be forecasted (and represent additional vadung),which



variables cannot be forecasted with acceptabldtgual
Furthermore, the additional economic value fromngsi
these forecasts in decision-making problems is st
important phase of this process.
Tests on existing approaches reveal the need fonefu

improvements in some of these algorithms. For exemppy;

specialized algorithms for unbalanced binary tireges (i.e.,
with a low frequency of 1) can improve the EV ashility
forecast. Furthermore, the forecasting literatiwesgarce in
several problems, such as load forecasting algostfor price
responsive loads and multivariate forecasting dtlgmis for
irregular seasonal time series.

The development of probabilistic forecasting altoris
would also be a valuable contribution for improvitige
market bidding algorithms.
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